
. RESEARCH PAPER .

SCIENCE CHINA
Information Sciences

November 2014, Vol. 57 112105:1–112105:19

doi: 10.1007/s11432-014-5116-6

c© Science China Press and Springer-Verlag Berlin Heidelberg 2014 info.scichina.com link.springer.com

Fast and compact dynamic data compression based
on composite rigid body construction

MA ZhiQiang1, WANG LiLi1∗, ZHANG BoNing1, KE Wei2 & ZHAO QinPing1

1State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering,
Beihang University, Beijing 100191, China;

2Macao Polytechnic Institute, Macao 999078, China

Received March 24, 2014; accepted April 24, 2014; published online June 30, 2014

Abstract 3D dynamic datasets compression still poses two challenges. One is high time cost due to grow-

ing data and complex computation of compression algorithms. The other is low compression factor because

of complex motions of dynamic scenes and unknown motion equations. In this paper, composite rigid body

construction for fast and compact compression of 3D dynamic datasets is proposed to solve these two prob-

lems. It accelerates the compression with a fast rigid body decomposition based on disjoint union, and avoids

serial searching, comparing and merging of the rigid body decomposition. To increase the compression factor,

composite rigid body is introduced with consideration of motion consistency among rigid bodies at different

time periods. The results of the experiments show that our algorithm compresses dynamic datasets quickly and

achieves a high compression factor.

Keywords time-varying datasets, dynamic datasets compression, rigid body decomposition,disjoint union,

composite rigid body construction

Citation Ma Z Q, Wang L L, Zhang B N, et al. Fast and compact dynamic data compression based on composite

rigid body construction. Sci China Inf Sci, 2014, 57: 112105(19), doi: 10.1007/s11432-014-5116-6

1 Introduction

With the advent of the Internet era, as well as the wide use of mobile computing platforms, such as

laptops, tablets, and smart phones, remote transmission and visualization have helped people make full

use of data on the Internet, and this has become an irresistible trend. Whereas the growth of data

obtained through observations and simulations is increasing much faster than the network bandwidth,

data traffic with limited bandwidth has become the bottleneck of transmission and visualization. Data

compression has provided a solution to this problem. There are two categories of data compression

methods for remote transmission and visualization. One is based on image compression, which renders

the scenes on the server, and sends the result images compressed with image or video coding to the

clients. These methods pose the risk of long delay due to variable visualization parameters, such as

viewpoints and looking directions, required by a huge number of clients. The other is based on 3D scenes

compression. The term node is used to represent both a vertex in triangle-based scenes (Figure 1 row 1)

and a particle in point-based scenes (row 2). For static scenes, these methods encode the positions and

∗Corresponding author (email: wanglily@buaa.edu.cn)

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:2

Figure 1 Our results (left), Rosen’s RBD results (middle) and the original dataset (right) for comparison. The dataset

sizes are 10 m × 9.8 m × 14.3 m for Bunny, 10 m × 8.3 m × 7.5 m for Armadillo, the maximum node error is 10 mm.

The compression factors of our method are 49.8:1 and 9.3:1, and the time costs are 18 and 67 s for Bunny and Armadillo,

while Rosen’s are 10.2:1 and 2.9:1, 770 and 987 s. The different colors of Armadillo indicate the different composite rigid

bodies generated by our method.

colors of nodes on the server, and reconstruct the 3D scenes on clients. They usually simplify the

geometry for complex scenes before encoding. Clients have 3D scenes, and can render them with variable

parameters, thus avoiding frequent interactions between clients and server when visualization parameters

change. There are some other methods focusing on the node trajectory compression for time-varying data,

but fast and compact compression is still a big challenge in the visualization field because of complex

motions and unknown motion equations of the scenes.

Rigid body decomposition (RBD) [1] is proposed to merge nodes into rigid bodies according to motion

consistency, and has achieved good compression factors for many kinds of dynamic scenes. Because

of serial searching, comparing, and merging, RBD takes a long time for the scenes with hundreds of

thousands of nodes. Another problem of RBD is missing motion consistency among the rigid bodies at

different time periods. For some datasets, the number of rigid bodies is large, thus the compression factor

is low.

In this paper we propose composite rigid body construction (CRBC) to provide a solution to both

the problems above. CRBC can process all kinds of time-varying datasets handled by RBD. The first

technique is rigid body decomposition based on disjoint union (DU-RBD). To avoid the serial searching,

comparing and merging of RBD, DU-RBD employs parallel generation of small rigid bodies (SRBs) and

a fast SRB combination based on disjoint union. DU-RBD accelerates the process of RBD. The second

technique takes advantage of motion consistency for a period of time, and merges the rigid bodies (RBs)

outputted from DU-RBD into composite rigid bodies (CRBs) according to their transformations. The

use of CRBs reduces the number of transformation matrices that need to be transmitted and makes the

compression more compact.

This method is tested on both triangle- and point-based scenes, which include significant movements

of the elements. The compressed datasets including CRBs and node colors are transmitted to the client,

where they are decoded to reconstruct the 3D dynamic scene. Figure 1 shows the reconstructed triangle-

and point-based scenes. The maximum node error threshold is controlled to 0.1% (10 mm/10 m). Com-

pared with Rosen’s RBD method, CRBC increases the compression factor to 5 and 3.2 times, and reduces

the time cost to 1/42 and 1/15 for Bunny and Armadillo. We also refer the reader to the attached video.

The remainder of the paper is organized as follows. In Section 2, the prior related work is discussed.

The definition of CRB is given in Section 3 and its construction is discussed in detail in Section 4.

Section 5 presents and discusses the results. Section 6 concludes the paper and sketches directions for

future work.

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:3

2 Related work

A variety of compression methods for time-varying data have been developed. These methods can be

classified as trajectory analysis, basis function methods, skinning decomposition, and motion vector

methods.

Trajectory analysis methods analyze the features of the joints or vertices trajectories, and approximate

them with parametric curves or polylines, which are clustered later for compact representations. Arikan [2]

fits 3D cubic Bezier curves to the trajectory of points, and clusters the curves with clustered principle

component analysis. Individual trajectory simplification [1] is proposed to simplify the trajectory curves

into polylines and to cluster the trajectory with a greedy algorithm. Lange et al. [3] also use a continuous

piecewise linear function to simplify the objects’ trajectory in moving objects databases. Three alignment

kernels such as shortest sequence alignment, edit distance alignment, and dynamic time warping alignment

are provided in [4], which cluster the trajectories to be more compact. Using trajectories analysis methods

on a scene with less coherence of trajectories, the compression factor is low.

Basis function methods project the positions of all vertices or clusters of vertices on some bases, and

reveal the correlations of sets both in space and on the time axis. Then the data can be represented

with the basis functions and only part of weights. Principal component analysis (PCA) [5–7] is used to

project the dynamic data into a linear subspace, and to get the principal component bases to reduce the

dimension of the data. Akhter et al. [8] present a bilinear spatiotemporal basis model to represent data

as a linear combination of spatiotemporal sequences consisting of shape modes oscillating over time at

key frequencies. It can quickly and efficiently label and denoise large databases of dense facial motion

capture data. Another option of the basis function is the wavelet. Wavelet transformation for 3D mesh

sequences and selection for optimized coefficients are proposed in [9–11].

The problem of approximating mesh animation with skinning decomposition was first addressed by

James and Twigg [12]. It identifies the near-rigid structure of the data with mean shift method, and

associates the triangles to the core bones. Vertices’ trajectories are estimated from the bones’ trans-

formations. Landreneau and Schaefer [13] propose poisson optimization to reduce the number of the

control points for deformation. Kavan et al. [14] introduce iterative coordinate descent optimization to

quickly construct high-quality skinned approximations of arbitrary mesh animations. The weight reduc-

tion techniques [12–14] cannot get trade-off well between accuracy (skinning error) and performance. Le

and Deng [15] propose a novel smooth skinning decomposition with rigid bone method to extract both

rigid bone transformations and a sparse, convex bone vertex weight map from a set of example poses. Le

and Deng [16] also introduce a two-layer structure including master bone and virtual bone to reduce the

dense weights to sparse ones without quality decreased.

Motion vector methods partition the vertices or meshes into sets manually or automatically, and com-

pute the motion vectors or transformation matrices, which are used to transfer the vertices or meshes

from one time step to another. Lengyel [17] splits the vertices of the time-varying geometry stream

into sets, and uses affine transformation to approximate the trajectories of the vertices. Shamir and

Pascucci [18] present a multi-resolution structure based on time-dependent directed acyclic graph (TDAG)

to simply deforming meshes. It separates the temporal deformation into low and high frequency motions,

and simplification is acquired by extracting high frequency transformation matrices. Shlafman [19] de-

composes the models into a small number of patches, and uses parameterizations method to map the

patches onto a disk or cylinder, which can represent the deformation of the scene. Motion vector com-

puted for each vertex is introduced in [20]. The positions of neighborhood within a distance of a vertex

are used to predict its motion vector. Ibarria and Rossignac [21] also predict vertex’s motion vector by

its relative coordinates from the previous frame. They introduce two space-time predictors to exploit the

inter-frame coherence. An octree-based motion representation method is proposed in [22], which can rep-

resent the dynamic sequence of the scene with a reduced set of motion vectors. Rigid body decomposition

is the technique that clusters the vertices into groups and uses sequences of rigid body transformations

to approximate the motions of the clusters [1]. RBD does compact compression even for the scene with

large scale deformations or motions, but the global searching and merging for RB construction are rather

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:4

time-consuming. Besides, RBD doesn’t consider the motion consistency among the vertices at different

time periods, which would help us improve the compression factor further.

Our method belongs to the motion vector methods and is based on RBD. We change the global

searching and merging of RBD into local ones, and construct SRBs in parallel. The SRBs are combined

into RBs with disjoint union, which change time complexity from O(m2) to linear, where m is the number

of nodes. We also introduce a method for considering motion consistency at different time periods, and

generating a more compact representation named composite rigid body.

3 Composite rigid body definition

The definition and construction of RB in RBD algorithm are first introduced, then we define CRB.

3.1 RB definition

RBD algorithm [1] groups nodes with similar trajectory into rigid bodies. A rigid body is a cluster of at

least 3 nodes whose motions can be approximated with a single sequence of rigid body transformations.

Instead of storing each node’s trajectory, rigid body only stores the initial position of each node and the

sequence of transformations. So a rigid body with v nodes (v � 3) is defined as RB(P1,Q):

• P1={(x1, y1, z1)1, (x2, y2, z2)1, . . . , (xv, yv, zv)1}is the set of initial positions of v nodes;

• Q={q2, q3, . . . , qs} is a set of s − 1 transformations of the rigid body, and s is the number of time

steps.

The rigid body decomposition approximates the position of node i in the rigid body rbr at time step

f according to

P f
i = qf (xi, yi, zi)

T
1 , (1)

where qf is rbr’s transformations at time step f , and the initial position of Pi is (xi, yi, zi)1.

3.2 RB construction

A dynamic scene including m nodes is shown in Figure 2 left. For a node i, RBD first tests if i can be

merged into any existing rigid body. Eq. (2) is used to decide if the node i can be merged into a RB rbr.

rbr ∪ {i} =

{
1, if Err(i, Qr) � ε,

0, if Err(i, Qr) > ε,
(2)

where ε is the error threshold, Qr is rbr’s transformations over s time steps and Err(i, Qr) returns

maximum node position error of i under Qr, which can be computed by

Err(i, Qr) = max(fabs(P f
i − P f

i

′
)) (1 < f � s), (3)

where P f
i

′
is node i’s original position at the time step f , and P f

i is i’s position computed with rbr’s

transformation qf in (1). If Err(i, Qr) is not bigger than ε, node i can be merged into the RB rbr. If

not, other two nodes j and k in the remaining nodes need to be found to construct a original RB with

three nodes. The node j is first to be found with the condition that the distance between i and j over s

time steps remains approximately the same, which means the distance variations of ij between the first

time step and other time steps are always smaller than the client-defined error threshold ε. Then RBD

finds node k whose distance variations to the nodes i and j also remain within ε over s time steps. Once

the original RB with three nodes i, j, k is generated, RBD computes the RB’s sequence transformation

matrices q2, q3, . . . , qs corresponding to the initial 3D positions of nodes in the RB. In Figure 2 (right),

the RB(i, j, k) moves to 3D positions (i′, j′, k′) at the time step f . A transformation qf is computed by

taking i’s position to i′’s position, with a rotation that aligns the planes of triangle ijk and i′j′k′, and
with a rotation about the normal of the triangle plane that aligns edges ij and i′j′.

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:5

Figure 2 RB construction in Rosen’s RBD algorithm.

The search of two nodes j and k in original RB construction is a kind of serial search. If adjacent

nodes have low motion consistency, a lot of time will be used to construct the original RB, especially if

no nodes j, k can be found.

3.3 CRB definition

There is still some motion redundancy in rigid body organization. Nodes in the same rigid body are

required to have motion consistency over all s time steps. However, in many cases, nodes in different

rigid bodies also have motion consistency at different time periods within s time steps. The merging of

rigid bodies with motion consistency in a period of time can improve compression factor efficiently. For

example, n rigid bodies have motion consistency from time step 1 to s/2. Without rigid body merging,

n×(s − 1) transformations are needed to be stored over s time steps. Whereas with the merging, only

(s/2−1)+n× s/2 transformations are needed, i.e., from time step 1 to s/2, there are only s/2−1 stored

transformations with rigid body merging compared with n × (s/2 − 1) stored transformations without

rigid body merging. To make rigid body more compact, we introduce composite rigid body to merge

rigid bodies according to their motion consistency at different time periods within s time steps. CRB

construction uses 3D node positions of all time steps as inputs, which are the same as that of RBD. The

outputs are composite rigid bodies. We define a composite rigid body as CRB(ts,te,RBset,Q):

• ts is the index of starting time step for the CRB;

• te is the index of ending time step for the CRB;

• RBset={rb1, rb2, . . . , rbn} is a set of RBs whose motions can be approximated with the transforma-

tions Q of rb1 from ts to te;

• Q={qts , . . . , qte} is a set of (te − ts + 1) sequences of rb1’s transformations from ts to te.

4 Composite rigid body construction

The composite rigid body is constructed with the following two major steps: 1) rigid body decomposition

based on disjoint union; 2) composite rigid body generation.

Figure 3 shows the overview of composite rigid body construction. Firstly, rigid body decomposition

based on disjoint union is introduced to accelerate the rigid body generation of the scene. Multiple RBDs

are explored on the nodes located on the local regions of the scene in parallel, and the output SRBs are

combined to generate the RBs quickly with disjoint union. The details of the first step are discussed in

Subsection 4.1. Secondly, a CRB generation algorithm is proposed to consider motion consistency among

the rigid bodies at different time periods. All rigid bodies of the scene are initialized as one CRB at the

first time step. For a given time step f , we check whether all rigid bodies in the same CRB of the last

time step f − 1 can still maintain the rigid body motion. If not, this CRB will be divided into some

children CRBs at the time step f . In the process of CRB generation, each CRB has its own lifetime from

ts to te. These CRBs give us partitions of RBs, and their lifetimes define the starting and ending time

steps of the CRBs. We illustrate the second step with details in Subsection 4.2. The nodes that cannot

be combined into the existing SRBs or RBs are called unassigned nodes(UNs). UN compressions 1 and

2 are used to make UNs more compact and to improve compression factor.

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:6

Figure 3 Overview of composite rigid body construction.

Figure 4 KD-tree division for 3D dynamic scene.

4.1 Rigid body decomposition based on disjoint union

Rigid body decomposition based on disjoint union is introduced to accelerate the process of rigid body

decomposition [1]. RBD generates rigid bodies of scenes with a brute force method. If the scene has

m nodes, which can be decomposed into n rigid bodies, it takes O(nm) time to determine whether the

nodes can be combined into the existing RBs or a new RB needs to be generated. Moreover, it takes

O(m2) time to construct a new rigid body with three nodes. We accelerate RBD with two sub-steps:

1) SRB construction, in which the SRBs of the scene are generated in parallel, avoiding a lot of global

searches in RBD. 2) SRB combination, which uses a fast algorithm based on disjoint union to combine

those SRBs into the RBs of the scene quickly. The details of these two sub-steps are introduced in the

following sections.

4.1.1 Small rigid body construction

Small rigid body is a rigid body that has the nodes only in local region of the scene. SRB construction

is the process to generate SRBs for the scene in parallel. The small rigid body is constructed with the

following two steps: 1) KD-tree creation for 3D dynamic scene; 2) small rigid body construction.

Step 1 A KD-tree is constructed according to the 3D positions of the nodes at the first time step. A

predefined constant k is used to limit the maximum number of nodes in each leaf of the tree, and balance

the sizes of the leaves. We first create axis aligned bounding box (AABB) for the dynamic scene at the

first time step. Then the 3D scene is divided with KD-tree until the number of nodes in each leaf is

smaller than k. Figure 4 (left) shows the 2D result of KD-tree division. k is set to 3, and the numbers

from 1 to 5 in box represent division times. A KD-tree is constructed in Figure 4 (right). We don’t use

octree to divide the scene because when compared with KD-tree, octree possibly divides the scene into

more small leaves with less than three nodes, and generates more UNs that should be constructed into

SRBs. More UNs lower compression speed.

Step 2 After building a KD-tree for 3D dynamic scene, we construct SRBs in the leaves that have at

least three nodes. In Figure 4 (right), the number of nodes in leaf L6 is less than 3, so L6 cannot be used

to construct a SRB and its nodes are defined as UNs. The SRB constructions for leaves are independent,

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:7

Algorithm 1 Merge()

Input: srbi, srbj

Output: Flag

1 Flag=true;

2 for each node w in srbj do

3 if !(srbi ∪ {w}) do

4 Flag=false;

5 end

6 end

7 if Flag then

8 srbi=srbi∪ srbj ;

9 srbi.v=srbi.v+srbi.u;

10 end

11 return Flag

so they can be done in parallel. We implement SRB construction in parallel on CUDA. Each leaf with

three or more nodes is allocated a thread. In each thread, we first initialize an original RB with three

nodes. If the original RB can be constructed, each remaining node in the thread is merged into the RB

by using (2) and (3) to output a SRB. If the RB construction fails, all the nodes in the leaf are set to

UNs. After SRBs construction, we can get SRBs and some UNs. The structure of the SRB is the same

as that of the RB discussed in Section 3.

SRB construction is faster than RBD because of two reasons. One is that SRB construction generates

SRBs for leaves in parallel, whereas RBD generates RBs in turn. The other is that the construction of

original RB in RBD, which needs to find three nodes in all the remaining nodes of the entire scene rather

than our one leaf needs plenty of time.

4.1.2 SRB combination

SRB construction is fast, but the large number of output SRBs with transformation matrices will decrease

the compression factor. Since many SRBs still have motion consistency, SRB combination is introduced to

merge these output SRBs into RBs quickly to increase compression factor. SRB combination is executed

with the following steps: 1) mapping creation between SRB leaves of KD-tree and uniform grid cells; 2)

small rigid body combination based on disjoint union; 3) unassigned nodes compression 1.

Step 1 A 3D uniform grid is introduced into SRB combination. If we combine SRB by traversing the

leaves of KD-tree directly, the adjacency relations of SRBs at some dimensions are lost. Compared with

3D uniform grid, disjoint union on KD-tree’s leaf leads to more RBs and decrease compression factor

when adjacent SRBs have high motion consistency. Thus, before feeding the SRBs into the combination

process, we relate the SRBs with the cells of a 3D uniform grid (64×64×64 grid cells are used in our

experiments), which organizes the SRBs into a straightforward way to show their 3D distributions and

provides a simple way to do the operations of disjoint union on these SRBs while considering their

adjacent relations.

To relate SRBs to the cells of the grid, the mapping from the leaves of the KD-tree to the grid cells

is created. The first node of the SRB inside a leaf is taken as the representative node of the leaf. The

cell where the representative node locates is mapped to the leaf, i.e. the SRB inside this leaf is related

to the cell. If there are more than one SRB related to the same cell, the first SRB is kept, and the other

SRBs are tested to see if they can be merged into the first one. Function Merge() in Algorithm 1 is used

to test if one SRB srbj can be merged into the other SRB srbi. The SRB srbj including u nodes can

be merged into srbi including v nodes with the condition that all nodes in srbj can be merged into srbi.

Because SRB has the same structure with RB, (2) and (3) are also used to merge a node w in srbj into

srbi. If Merge() returns true, all u nodes of srbj are added into srbi. Otherwise, the nodes in srbj are

discarded as unassigned nodes.

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:8

Figure 5 The creation of mapping between the SRB leaves of KD-tree and the cells of uniform grid.

Figure 6 A uniform grid for SRB combination is shown (left), and each cell contains one SRB. The arrow indicates the

right and bottom neighbors of srb1, srb2, and srb5. SRB combination is executed when we move on to srb1, srb2, and srb5

(right). The final quadrilateral SRBs are the RBs by SRB combination.

Figure 5 shows the mapping creation from the SRB leaves of KD-tree to the uniform grid cells. We

map the leaves with SRB to the grid cells according to the positions of the representative nodes in the

leaves (the first number in Figure 5(a) and triangle representation in Figure 5(b)). Because node 1 is

the representative node of L1 and locates in cell(1,1) (Figure 5(b)), L1 is mapped to cell(1,1) (Figure

5(c)). Likewise, L4 maps to cell(1,4), L5 maps to cell(2,3), L7 maps to cell(3,3), and L8 maps to cell(4,3).

Representative nodes 4 of L2 and 7 of L3 both locate in cell(1,3). But only the mapping between L2 and

cell(1,3) is kept because the first related SRB is in L2. Function Merge() is used to test if the SRB in

L3 can be merged into the SRB of L2. If Merge() returns true, all nodes in L3’s SRB are added into L2’s

SRB. Otherwise, the nodes in L3’s SRB are discarded as UNs. L6 contains only 2 nodes, which cannot

be used to generate a SRB. So nodes 16 and 17 in L6 are considered as UNs.

Step 2 In SRB combination, a fast algorithm based on disjoint union is proposed to combine SRBs

into the RBs for the scene quickly. Figure 6 shows a 2D example of SRB combination. The left figure is

the uniform grid generated with the SRB construction in Step 1. To be more comprehensible, each cell

is supposed to map to a leaf of KD-tree and relates one SRB, from srb1 to srb16. The neighbor finding

and union operations are executed in row major order for SRBs. For each cell with srbi, we find its right

and bottom cells to see if their srbj can be combined with srbi. Starting from srb1 in Figure 6, first we

find its right neighbor srb2, and use Function Merge() to test whether srb2 can be merged into srb1. If

Merge() returns true, srb2 is merged into srb1, also taking srb1 as its parent. After that, the bottom

neighbor srb5 is tested. If srb5 cannot be merged, it would be left. Then we move on to srb2. When we

test if srb3 can be merged with srb2, we compare srb3 with srb2’s parent srb1. If srb3 can be merged with

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:9

Algorithm 2 SRB combination

Input: cells of the grid

Output: rigid body array RB

1 for each cell(i, j, k) do

2 if cell(i, j, k).srb!=null then

3 cell(i, j, k).parentID=(i, j, k);

4 cell(i, j, k).rank=cell(i, j, k).srbNodeNum;

5 end

6 end

7 for each cell(i, j, k) do

8 if cell(i, j, k).srb!=null then

9 Union(cell(i, j, k), cell(i+ 1, j, k)); Union(cell(i, j, k), cell(i, j + 1, k)); Union(cell(i, j, k), cell(i, j, k + 1));

10 end

11 end

12 Save(RB,cell);

srb1, srb3’ parent is also set to srb1. If srb6 cannot be merged with srb2, it would be left. When moving

on to srb5, its right neighbor srb6 is tested for merging. srb6 is combined with srb5 if Merge() returns

true. The same is for srb9. In Figure 6 (right), the final quadrilateral SRBs are the RBs generated by

SRB combination.

Given cells of the grid, the SRB combination is computed with Algorithm 2. Each cell is a structure

with four elements (srb, srbNodeNum, parentID, rank):

• srb is the merged SRB and its initial value is the cell’s related SRB;

• srbNodeNum is a constant and its value is the node number of cell’s related SRB;

• parentID is the index vector that refers to the cell’s parent;

• rank is the node number of the merged SRB srb.

The algorithm considers each cell in turn. It first makes the cell’s parentID point to itself, and initializes

its rank with srbNodeNum. Then, for each cell with SRB inside, the algorithm combines the cell with

the cells on the right, back, and bottom. After all cells are processed by these union operations, Save()

function copies the cells’ srb with non-zero rank to RB array for final results.

Union() function of two cells is defined in Algorithm 3. For two given cells, Union() first compares

the cells’ parentID. If they are the same, which indicates that these two cells are already merged with

union operations, it returns directly. Otherwise, we need to determine whether the srb in the cell with

smaller rank minrank root can be merged into the srb in the cell with a bigger rank maxrank root by

using the function Merge(). If Merge() returns true, it means that the srb of maxrank root has been

updated to contain all the nodes of srb inside minrank root. The rank of maxrank root is also updated

to add the rank of minrank root, and the rank of minrank root changes to zero. The cell with smaller

rank takes the parentID of maxrank root as its parentID.

Step 3 The number of unassigned nodes produced with DU-RBD is much larger than the result of

RBD, which is due to two reasons. One is that only the nodes in the same leaf of the KD-tree are tested

to generate SRB, the other is that some SRBs are discarded in SRB combination, whose nodes are left

as unassigned nodes. To reduce the number of unassigned nodes, we first merge them into the existing

RBs. Then the nodes still unassigned are processed with RBD to generate new RBs. To accelerate this

process, for a given node, a predefined radius is used to limit the searching space when the rigid body

is constructed. After this, the number of unassigned nodes is almost the same as the results of Rosen’s

RBD method. We refer this process to reduce the unassigned nodes generated from DU-RBD as UN

compression 1 in this paper.

Figure 7 shows the SRBs and RBs for the deformable bunny dataset. Because SRB is generated with

the nodes inside a leaf of the KD-tree, there are a lot of SRBs generated in small sizes (left). Therefore

time consumption reduces because of the parallel construction for these small SRBs. But the large number

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:10

Figure 7 SRBs constructed with KD-tree(left) and RBs generated with SRB combination(right) are shown with random

colors.

Algorithm 3 Union(cell(i, j, k), cell(x, y, z))

1 (a1, b1, c1)=cell(i, j, k).parentID;

2 (a2, b2, c2)=cell(x, y, z).parentID;

3 root1= cell(a1, b1, c1);

4 root2=cell(a2 , b2, c2);

5 if root1== root2 then

6 return

7 end

8 if cell(x, y, z).srb!= null then

9 minrank root=minRank(root1,root2);

10 maxrank root=maxRank(root1,root2);

11 if (maxrank root.srb).Merge(minrank root.srb) then

12 maxrank root.rank=maxrank root.rank+minrank root.rank;

13 minrank root.rank=0;

14 minrank root.parentID=maxrank root.parentID;

15 end

16 end

of SRB will decrease the compression factor, and a fast SRB combination is used to merge SRB into RB

(right), which make the representation of the data more compact.

4.2 Composite rigid body generation

In RBD method [1], even if the two groups of nodes only have a different transformation at the last time

step, they are considered as two separate RBs. The same transformations of the two RBs of the time

steps before the last time step are transferred twice. To avoid this problem, composite rigid bodies are

generated to consider the motion consistencies of RBs at different time periods.

Consider n rigid bodies constructed with DU-RBD. The goal of composite rigid body generation is to

classify the rigid bodies into groups by motion consistency at different time periods, i.e., from a starting

time to an ending time. The motion of the rigid bodies in the same group can be approximated well with

a sequence of rigid body transformations.

The idea of our CRB generation algorithm is explained with an example in Figure 8. In this case,

DU-RBD outputs 8 RBs, which are referred as rb1 to rb8. At the first time step, all these 8 RBs are con-

sidered as one CRB crb1, whose starting time is 1. crb1 remains the first three time steps, the trajectories

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:11

Figure 8 An example of division function for composite rigid body generation.

of rb1 to rb8 can be approximated with their positions in the first time step and rigid body transformation

matrices of rb1. Then at the time step 4, this CRB is divided into 3 new CRBs, namely crb2, crb3, and

crb4, which means the position errors of some RBs such as rb2, rb3, rb5, rb7 and rb8, are bigger than

predefined thresholds when we still use rigid body transformation matrices of rb1 to compute their

positions. Thus crb1’s ending time is set to 4, and three new CRBs’ starting time steps are set to 4. This

process recurs to each CRB until the total number of existing CRBs becomes 8 or the process reaches

the last time step.

The algorithm of composite rigid body generation is in Algorithm 4. rb1, rb2, . . ., rbn refer to n rigid

bodies, and frameNum refers to the total number of the time steps. In the initialization part, a CRB

crb1 is used to contain all RBs inputs, and its starting time is set to the first time step. Then, crb1 is

added into a queue q1. In the main process, for each CRB in q1, we check whether it can be divided into

some new CRBs. There are two cases that the CRB does not need to be divided. One is when this CRB

has only one RB inside, and the other is when the current time step is the last time step input. When

either of these happens, this CRB is added into CRB set directly, and its ending time is set to the last

time step. Otherwise, this CRB enters the division process CRB division() with its position information

of the next time step. The function CRB division() returns the number of the new CRBs generated, and

an array newCRB is used to store the new CRBs. Consequently, if the number of the new CRBs is more

than one, which means the CRB starts to be divided, all those new CRBs are added into a new queue

q2, and their starting time steps are set to the next time step f +1. At the same time, the original CRB

is added into CRB set, also its ending time is set to f + 1. This main process repeats for every time

step. It will stop early only if the number of new CRB reaches to n. Figure 9 shows the CRBs in random

colors of the corresponding time steps.

The CRB is divided and the new CRBs are constructed using Algorithm 5 and Algorithm 6. Algorithm

5 constructs the first new CRB with the first RB of the input CRB. Then, for other RBs inside the input

CRB, we need to test whether they can be merged into the new CRBs generated. The first RB is used

as the representation of a new CRB. Therefore, if the function (newCRB.rb(1)). Merge() returns true,

which means the position of undetermined RB at time step f can be approximated by the transformation

matrix of the first RB of this new CRB, the undetermined RB is added to this new CRB. Then we

move on to the other remaining RBs. For any given RB, if it cannot be merged into any one of the new

CRBs, a new CRB will be constructed to contain this RB. The algorithm puts all new CRBs into the array

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:12

Algorithm 4 Composite rigid body generation

Input: rb1, . . . , rbn, frameNum

Output: CRB set

1 crb1.RBset={rb1, . . . , rbn}; crb1.ts = 1;

2 q1 = null; CRB set={ };
3 q1.push back(crb1); q1.number = 1;

4 for f = 1 to frameNum do

5 q2 = null;

6 wihle q1.number > 0 do

7 crb=q1.pop front();

8 q1.number = q1.number −1;

9 if crb.rbNo==1 || f==frameNum then

10 crb.te=frameNum;

11 CRB set+={crb};
12 end

13 else

14 CRBNo=CRB division(crb,f+1,&newCRB);

15 q2= Newqueue(CRBNo, newCRB);

16 CRB set+={crb};
17 end

18 end

19 q1 =q2;

20 end

Algorithm 5 CRB division(crb,f ,&newCRB)

1 classfy=true; newCRBno=0;

2 constructNewCRB(newCRBno,1);

3 for i=2 to crb.rbNo do

4 for j =1 to newCRBno do

5 if (newCRB(j).rb(1)).Merge(crb.rb(i), f) then

6 t=++newCRB(j).rbNo;

7 newCRB(j).rb(t)=crb.rb(i);

8 classfy=false;

9 break;

10 end

11 end

12 if classfy then

13 constructNewCRB(newCRBno,i);

14 end

15 end

16 return newCRBno

Algorithm 6 constructNewCRB(newCRBno,i)

1 newCRBno=newCRBno+1;

2 newCRB(newCRBno).rb(1)=crb.rb(i);

3 newCRB(newCRBno).rbNo=1;

newCRB, and the number of these new CRBs as an output is returned.

To improve the compression factor, we merge the remaining UNs into CRBs after CRB generation.

We refer this process as UN compression 2. For each unassigned node p, first we determine whether it

can be merged into crb1 during its lifetime (see in Figure 8). If it could be merged, we store the index 1

for p, and test whether p could be merged into the CRBs that are divided from crb1, such as crb2, crb3,

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:13

(a) (b) (c) (d) (e)

Figure 9 At the first time step, all RBs are in one CRB with blue color. At time step 190, the ball falls off, and one

CRB is divided into two for the bunny and the ball respectively. In (c), the ball hits the back of the bunny, and the back

of the bunny deforms according to FEA computation. Some small CRBs are generated at local region of the back. The

deformations are transferred to other parts of the bunny, such as the whole body, the head and the ears. Consequently,

more and more CRBs are generated in the last two figures on the right. (a) Time step=1; (b) time step=190; (c) time

step=316; (d) time step=322; (e) time step=369.

Figure 10 The Truck and Bowl scenes constructed by our algorithm (left) and Rosen’s RBD algorithm (middle) are

compared with the original dataset (right).

0 1 2 3 4 5 6 7 8 9 10

Figure 11 Visualization of error on the node itself between its original and reconstructed positions with our algorithm

(row 1) and Rosen’s RBD+ITS algorithm (row 2). Error values within 10 mm for each node corresponding to different

colors (row 3).

and crb4. If p can be merged into one of those CRBs, for example, crb3, the index 3 is recorded for p

too, and then we move on to the children of crb3. This process recurs until p cannot be merged into any

descendants of this branch at time step i, such as crb5 and crb6, then the 3D positions of p are stored

from ith time step.

To improve the compression factor, we merge the remaining UNs into CRBs after CRB generation.

We refer this process as UN compression 2. For each unassigned node p, first we determine whether it

can be merged into crb1 during its lifetime (see in Figure 8). If it could be merged, we store the index 1

for p, and test whether p could be merged into the CRBs that are divided from crb1, such as crb2, crb3,

and crb4. If p can be merged into one of those CRBs, for example, crb3, the index 3 is recorded for p

too, and then we move on to the children of crb3. This process recurs until p cannot be merged into any

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:14

descendants of this branch at time step i, such as crb5 and crb6, then the 3D positions of p are stored

from ith time step.

We store the final compressed 3D dynamic datasets with the following structure. 1) The number of

nodes in the scene. 2) The initial position and color of each node in the scene. 3) The connection relations

for triangle-based scenes. 4) The number of RBs. 5) Each RB stores the number of nodes and the global

index of node. 6) The number of CRBs. 7) Each CRB stores the starting and ending time steps ts, te,

transformations from ts to te, the number of RBs and the global index of RB. 8) The number of UNs. 9)

Each UN stores the global index of the nodes, the indexes of CRBs, 3D positions of the node from te+1

of its last indexed CRB to the last time step.

5 Result and discussion

We apply our CRBC algorithm to four datasets: Bunny (Figure 1, top), Armadillo (Figure 1, bottom),

Truck (Figure 10, top), and Bowl (Figure 10, bottom). The deformation of the bunny, the truck, and

the bowl in these dataset are computed with finite element analysis (FEA). The motions of armadillo-

shaped fluid and the water are simulated with smoothed particle hydrodynamics method (SPH). Bunny

has 35 000 nodes and 381 time steps. The size of its AABB is 10 m × 9.8 m × 14.3 m. Armadillo

has 72 000 nodes and 81 time steps. The AABB of it is about 9.9 m × 8.3 m × 7.5 m. Truck has

29 000 nodes and also 81 time steps. Its AABB occupies 15 m × 5 m × 3.3 m. The last dataset is a scene

with fluid-solid coupling. It has 19 000 nodes and 171 time steps, and its AABB is about 6.7 m × 6.4 m

× 10.5 m. All performance measurements reported in this paper were recorded on a 3.4 GHz Intel(R)

Core(TM) i7-2600 CPU PC with 4 GB of RAM and an NVIDIA GeForce GTX 580 graphics card.

5.1 Compression quality

Figure 10 shows another two datasets we used to test our algorithm. The top row is Truck and the

bottom row is Bowl. The figures in the left column are the results of our algorithm, and the figures on

the middle column are the outputs of Rosen’s RBD algorithm, and the right column shows the ground

truth of the original dataset without any compression. Although there is almost no obvious difference

between the original and the reconstructed scenes by using our or Rosen’s RBD algorithms, the average

errors of nodes with our algorithm is lesser than those of Rosen’s RBD algorithm.

Table 1 gives average errors of four datasets with variable error thresholds using our method and

Rosen’s methods. The average error is computed as the average of the differences between the positions

of all nodes for the reconstructed and the original data over all the time steps. Figure 11 shows the error

of the node between the reconstructed position and the original one at a time step. We can see more

nodes with smaller error colors, such as black and blue, existing in different models with our algorithm

(row 1) compared with Rosen’s RBD+ITS method (row 2). The accompanying video also shows the

position errors of nodes over time steps for different scenes. Our average error is smaller than Rosen’s

RBD mainly because of UN compression. The position of a reconstructed UN is obtained by the linear

interpolation with Rosen’s ITS algorithm [1], whereas by CRB’s transformations or their original datasets

with our algorithm.

The average error ratio between our method and Rosen’s RBD+ITS is also given in Table 1. The best

case is the Bowl scene with error threshold 10 mm and its error ratio is 0.360, while the worst one is the

Bunny scene with error threshold 100 mm, and its error ratio is 0.999. This is because the best case has

a lot of UNs left for UN Compression, and the worst has almost none. We also give node number-position

error histograms for a time step of those two cases in Figure 12. In the histogram of the best case (Figure

12(a)), almost 95% nodes have very small position errors between 0 and 0.5 mm by using our method.

In contrast, using Rosen’s RBD+ITS method, there are only 45% nodes with error from 0 to 0.5 mm,

10% nodes with error from 0.5 to 10 mm. There are still about 45% nodes that cannot be merged into

RBs. ITS is used to compress the trajectories of them, thus leading to the bigger position error above 10

mm. Even in the worst case (Figure 12(b)), the node number with smaller error from 0 to 5 mm of our

method is higher than that of Rosen’s method.

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:15

Table 1 The average error of our method compared with Rosen’s

Model
Error Average error (mm)

threshold Rosen’s Rosen’s Rosen’s Our Error

(mm) ITS TC+ITS RBD+ITS method ratio

10 8.26 8.25 3.31 2.88 0.870

Bunny 50 25.46 23.49 12.73 12.56 0.987

100 41.92 41.95 23.82 23.81 0.999

10 8.03 8.03 1.90 1.72 0.905

Truck 50 37.50 37.30 6.93 6.81 0.983

100 63.70 63.50 15.72 15.63 0.994

10 8.51 8.52 5.28 3.14 0.595

Armadillo 50 36.94 36.95 23.15 15.97 0.690

100 71.77 71.85 44.71 36.42 0.815

10 8.93 8.95 6.33 2.28 0.360

Bowl 50 42.83 42.84 27.23 14.76 0.542

100 76.95 76.96 51.62 29.14 0.565

18000

16000

14000

12000

10000

8000

6000

4000

2000

0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10 >10

9000

8000

7000

6000

5000

4000

3000

2000

1000

0
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

RBD-100

CRBC-100

RBD-10

CRBC-10

Position error (mm)

Position error (mm)

N
o
d
es

 n
u
m

b
er

N
o
d
es

 n
u
m

b
er

(a)

(b)

Figure 12 The histogram of node distribution according to its position error. (a) Bowl scene with error threshold 10

mm; (b) Bunny scene with error threshold 100 mm at a given time step.

We also give the average errors of Rosen’s ITS and ITS+TC [1] algorithms in Table 1. ITS reconstructs

nodes’ trajectories by linear interpolation with the stored positions at key time steps, and TC simplifies

nodes trajectories into clusters by minimizing cluster entropy. From Table 1, we can see that ITS and

TC get bigger average error than our and Rosen’s RBD+ITS algorithms.

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:16

Figure 13 The points based on the rendering for the four datasets. Compared with the original datasets (row 1), the

reconstructed datasets with error<10 mm (row 2) are very similar in vision. However, there are some big differences between

the original datasets and the results with error<100 mm (row 3).

1800

1600

1400

1200

1000

800

600

400

200

0

1600

1400

1200

1000

800

600

400

200

01
2
1

4
1

6
1

8
1

1
0
1

1
2
1

1
4
1

1
6
1

1
8
1

2
0
1

2
2
1

2
4
1

2
6
1

2
8
1

3
0
1

3
2
1

3
4
1

3
6
1

3
8
1

1 9 17 25 33 41 49 57 65 73 81

RBD-10

RBD-50

RBD-100

CRBC-10

CRBC-50

CRBC-100

RBD-10

RBD-50

RBD-100

CRBC-10

CRBC-50

CRBC-100

R
B

/C
R

B

R
B

/C
R

B

Frame Frame

(a) (b)

Figure 14 The CRB number is compared with the RB number of Rosen’s method for time steps. (a) Deformable bunny;

(b) truck traffic.

In our method, large error thresholds lead to fewer RBs, fewer CRBs, and fewer UNs, thus increasing

the compression factor. But the reconstruction quality decreases according to the increase of error

thresholds. For better visualization, Figure 13 shows point-based rendering for four datasets. No obvious

difference can be noticed from the original datasets (row 1) to the results with error<10 mm (row 2).

But for the error<100 m cases (row 3), there are some large differences at the bunny ears, the obstacle

ends and the feet of armadillo. For the Bowl scene, there are still some differences between the original

and the constructed scene with error<100 mm. But the differences are covered by the distribution of

SPH particles.

5.2 Compression performance

We evaluate our compression performance by compression factor and compression time.

5.2.1 Compression factor

In Table 2, the compression factors of our method are in average 3.3 times of those of Rosen’s RBD+ITS

method. The best compression factor of our method is from the Bunny dataset with error 100 mm, and

is 6 times of the Rosen’s, whereas the worst is from the Truck dataset with error 10 mm. The results

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:17

Table 2 The compression performance of our method compared with Rosen’s

Error Compression factor Compression time (s)

Model threshold Rosen’s Rosen’s Rosen’s Our
Zlib

Rosen’s Our

(mm) ITS TC+ITS RBD+ITS method RBD+ITS method

10 5.3 8.7 10.2 49.8 769.95 18.38

Bunny 50 10.9 17.2 17.7 95.2 3.2 441.53 6.53

[1.53 GB] 100 30.1 46.9 47.4 283.6 173.62 2.42

10 6.5 9.8 11.4 14.3 567.87 17.2

Truck 50 15.3 24.8 25.1 37.5 3.8 375.68 4.38

[365 MB] 100 22.1 33.8 33.4 56.9 282.91 1.97

10 2.7 3.0 2.9 9.3 986.92 67.24

Armadillo 50 4.0 4.7 4.6 15.4 3.9 552.17 26.13

[330 MB] 100 7.8 8.5 8.4 21.5 258.24 9.68

10 2.2 2.5 2.3 6.5 1269.53 155.38

Bowl 50 2.9 3.4 3.1 11.6 4.1 956.27 109.61

[286 MB] 100 4.5 5.2 4.9 17.5 763.46 94.93

tioned above are caused by the motion patterns of objects in these two datasets. Deformable Bunny

dataset has 381 time steps, in which the bunny rotates from time step 1 to 180. Then it stays and the ball

falls off without touching the bunny from 181 to 315. At last the ball hits the bunny, bounces up, and

the bunny deforms from 316 to 381. That is, in the first 315 time steps, two objects maintain their rigid

body motions respectively, then the bunny deforms. Our method works well in this case because CRB

takes motion consistency at different time periods among RBs into consideration. The Truck dataset has

81 time steps, simulates the truck collision at the first time step, and then deformation and the crushing

from time step 2 to 81. Even for this motion pattern, the compression factor of our method is still higher

than Rosen’s RBD+ITS because the number of CRB for each time step is smaller than or equal to the

RB number of Rosen’s method. Figure 14 compares the CRB number of our method (dot lines) with the

RB number of Rosen’s RBD method (solid lines) for time steps. The color blue, green, and red indicate

the variable error thresholds: 10, 50, and 100 mm. In the deformable Bunny dataset (Figure 14(a)), the

CRB number keeps almost as a constant of 1 or 2 from time step 1 to 315, then quickly goes up and

stops at the value which is less than the number of RBs of Rosen’s method. In Figure 14(b), the truck

deforms on all 81 time steps after collision, therefore, the CRB number increases gradually to approach

the RB number.

Users can segment the trajectory of a dynamic scene into pieces manually according to the motion

consistency at different time periods. RBD can be used on each piece separately to increase the com

pression factor. For example, the Bunny trajectory can be segmented into three pieces. We use RBD to

compress the trajectory at time intervals from 1 to 180, 181 to 315, and 316 to 381 individually. Even in

this case, the compressed number of CRBs in each time subset is closer or equal to Rosen’s RB number.

Thus the compression factor of our method is almost the same as that of RBD algorithm. For the Truck

scene, manual segmentation for trajectory is difficult and results in a lot of trajectory pieces. For each

piece, the initial positions of nodes have to be stored with RBD algorithm. Whereas our CRB method

just needs to store the initial positions of nodes once over the entire s time steps. In this situation, RBD

results in much lower compression factor than ours.

Like Rosen’s RBD algorithm, our compression algorithm is also not based on the motion consistency

of adjacent nodes. If the nodes in the KD-tree cannot be constructed into a small rigid body, UN

compression 1 is used to compress the remaining unassigned nodes. Thus we can get closer compression

factors with that of Rosen’s method. The Bowl and the Bunny scenes with different motion consistency

of adjacent nodes are taken as examples. In the Bowl scene, water nodes break up at last few time steps,

so adjacent nodes maintain almost no motion consistency over all 171 time steps. If we only compress

nodes of the Bowl scene based on DU-RBD without CRB generation, the final compression factors are

2.25, 3.02, 4.86 with corresponding error thresholds 10, 50, and 100 mm, which are almost the same as

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:18

Table 3 The time consumed for each step of our algorithm(s)

Model
Error SRB SRB UN CRB UN

(mm) construction combination compression 1 construction compression 2

10 0.45 0.33 3.65 5.23 6.72

Bunny 50 0.43 0.29 1.15 1.24 3.42

100 0.39 0.23 0.48 0.48 0.94

10 0.54 0.21 1.22 3.54 11.89

Truck 50 0.49 0.14 0.30 0.62 2.83

100 0.41 0.06 0.14 0.33 1.03

10 1.52 0.05 45.56 0.56 19.55

Armadillo 50 1.06 0.11 18.12 0.88 5.96

100 0.42 0.28 5.62 1.11 2.25

10 1.97 0.05 123.52 0.58 29.26

Bowl 50 1.89 0.06 82.69 0.59 20.28

100 1.82 0.07 77.16 0.61 15.33

those of RBD method in Table 2. In the Bunny scene, although the adjacent nodes have high motion

consistency, the final compression factors are 10.02, 16.8, and 46.9 without CRB generation, which are

also closer to those of RBD method. The results above demonstrate that without CRB generation,

whether the motion consistency of adjacent nodes is high or not, DU-RBD achieves almost the same

compression factor as that of RBD algorithm. CRB generation improves the compression factor in our

method compared with Rosen’s RBD method.

We also compare our method with Rosen’s ITS, TC+ITS, and a standard compression algorithm Zlib

in Table 2. Compared with Rosen’s ITS and TC+ITS, we still have advantage in compression factor.

Compared with Zlib, the results show that in the Bunny and the Truck scenes, our compression factors

are at least 3.7 times of Zlib’s because most nodes can be organized into CRBs. However, our compression

factors are at most 5.5 times of those of Zlib’s for the Armadillo and the Bowl scenes. The reason is

that Armadillo and Bowl have many fluid particles, and motion consistency of nodes is very low, which

leads to few CRBs.

5.2.2 Compression time

The last two columns of Table 2 show time consumed with our CRBC and Rosen’s RBD+ITS methods.

Our compressions for these four datasets are from 7 to 143 times faster than Rosen’s. The highest

speedup case is the Truck dataset with error 100 mm, whereas the lowest one is the Bowl dataset with

error 10 and 100 mm. The time cost at all steps of our method is shown in Table 3. From Table 3, the

average time cost of SRB generation, SRB combination, and CRB construction for all examples is 2.42 s,

while two UN compressions take 40.24 s, which means the UN compressions are the most time-consuming

parts. In the high speedup case, the time spent for 2 UN compressions is 1.17 s, while the lowest uses

152.78 s. This is because in the Truck scene, the higher motion consistency adjacent nodes have, the

higher success ratio of SRB construction each leaf obtains. More SRBs generation leads to smaller number

of UNs, which results in less compression time for UNs. The Bowl scene includes adjacent nodes with

low motion consistency, and suffers a long UN compression.

5.3 Limitations

Our method compresses the trajectories of the nodes, thus it suffers the same limitation of the node-

based compression methods. It does not compress the topological relations for the vertices from triangles

and polygons. Thus to reconstruct the mesh-based scene, that topological relations are still need to be

transferred.

Both our method and Rosen’s RBD method are not guaranteed to generate the best solutions of rigid

body construction because of the main frame of greedy algorithm. Both methods get low compression

factors when the nodes have almost no motion consistency in scenes.

Ma Z Q, et al. Sci China Inf Sci November 2014 Vol. 57 112105:19

6 Conclusion and future work

We have presented the techniques for composite rigid body construction, which accelerates compression

with rigid body decomposition based on disjoint union, and increases the compression factor by merging

the rigid bodies that have period transformation consistency into composite rigid bodies. The results of

the experiments show that our algorithm compresses dynamic datasets quickly and compactly.

In terms of future work, for some large datasets, the data may still be too large to be sent even after

compression. We will extend our method from nodes in 3D space to samples in the screen space, thus

providing solutions to these cases. The view parameters from the clients are used to determine the

samples required.

Acknowledgements

This work was supported by National High Technology Research and Development Program of China (863)

(Grant No. 2013AA01A604), National Natural Science Foundation of China (Grant Nos. 61272349, 61190121

and 61190125), Macao Science and Technology Development Fund (Grant No. 043/2009/A2).

References

1 Rosen P, Popescu V. Simplification of node position data for interactive visualization of dynamic datasets. IEEE Trans

Vis Comput Graph, 2012, 18: 1537–1548

2 Arikan O. Compression of motion capture databases. ACM Trans Graph, 2006, 25: 890–897

3 Lange R, Farrell T, Durr F, et al. Remote real-time trajectory simplification. In: Proceedings of 2009 IEEE Interna-

tional Conference on Pervasive Computing and Communications. Piscataway: IEEE, 2009. 1–10

4 Vries, G D, Someren M V. Clustering vessel trajectories with alignment kernels under trajectory compression. In:

Proceedings of European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer,

2010. 296–311

5 Alexa M, Mueller W. Representing animations by principal components. Comput Graph Forum, 2000, 19: 411–418

6 Karni Z, Gotsman C. Compression of soft-body animation sequences. Comput Graph, 2004, 28: 24–34

7 Sattler M, Sarlette R, Klein R. Simple and efficient compression of animation sequences. In: Proceedings of the 2005

ACM SIGGRAPH/Eurographics Symposium on Computer animation. New York: ACM, 2005. 209–217

8 Akhter I, Simon T, Khan S, et al. Bilinear spatiotemporal basis models. ACM Trans Graph, 2012, 31: 17–29

9 Guskov I, Khodakovsky A. Wavelet compression of parametrically coherent mesh sequences. In: Proceedings of the

2004 ACM Siggraph/Eurographics Symposium on Computer Animation, Switzerland, 2004. 183–192

10 Payan F, Antonini M. Wavelet-based compression of 3d mesh sequences. In: Proceedings of the Second International

Conference on Machine Intelligence. Piscataway: IEEE, 2005. 32–40

11 Beaudoin P, Poulin P, van de Panne M. Adapting wavelet compression to human motion capture clips. In: Proceedings

of Graphics Interface. New York: ACM, 2007. 355–364

12 James D L, Twigg C D. Skinning mesh animations. ACM Trans Graph, 2005, 24: 399–407

13 Landreneau E, Schaefer S. Poisson-based weight reduction of animated meshes. Comput Graph Forum, 2010, 29:

1945–1954

14 Kavan L, Sloan P P, O’Sullivan C. Fast and efficient skinning of animated meshes. Comput Graph Forum, 2010, 29:

327–336

15 Le B H, Deng Z. Smooth skinning decomposition with rigid bones. ACM Trans Graph, 2012, 31: 199–209

16 Le B H, Deng Z. Two-layer sparse compression of dense-weight blend skinning. ACM Trans Graph, 2013, 32: 258–266

17 Lengyel J E. Compression of time-dependent geometry. In: Proceedings of ACM Symposium on Interactive 3D

Graphics. New York: ACM, 1999. 89–95

18 Shamir A, Pascucci V. Temporal and spatial level of details for dynamic meshes. In: Proceedings of ACM Symposium

on Virtual Reality Software and Technology. New York: ACM, 2001. 77–84

19 Shlafman S, Tal A, Katz S. Metamorphosis of polyhedral surfaces using decomposition. Comput Graph Forum, 2002,

21: 219–228

20 Yang J H, Kim C S, Lee S U. Compression of 3-D triangle mesh sequences based on vertex-wise motion vector

prediction. IEEE Trans Circuit Syst Video Technol, 2002, 12: 1178–1184

21 Ibarria L, Rossignac J. Dynapack: space-time compression of the 3D animations of triangle meshes with fixed connec-

tivity. In: Proceedings of the ACM Siggraph/Eurographics Symposium on Computer Animation, Switzerland, 2003.

126–135

22 Zhang J, Owen C B. Octree-based animated geometry compression. Comput Graph, 2007, 31: 463–479

